
THREAT ADVISORY

ATTACK REPORT

Date of Publication

May 13, 2025

Admiralty Code

A1

TA Number

TA2025145



Summary

THREAT ADVISORY • ATTACK REPORT (Red) |2

First Seen: May 5, 2025
Targeted Countries: Worldwide
Attack: The widely used npm package rand-user-agent, known for generating random browser 
user-agent strings, was compromised in a supply chain attack. Malicious versions (1.0.110, 
2.0.83, and 2.0.84) were published to the npm registry, containing obfuscated code that 
installed a Remote Access Trojan (RAT). This malware established a connection to a command-
and-control server, enabling attackers to execute shell commands, upload files, and harvest 
system information. The malicious code was absent from the project's GitHub repository, 
indicating a targeted attack on the npm distribution channel. Although the compromised 
versions have been removed, affected users are advised to conduct thorough system scans, as 
simply downgrading the package does not eliminate the RAT.

Attack Regions

© Australian Bureau of Statistics, GeoNames, Microsoft, Navinfo, Open Places, OpenStreetMap, TomTom, Zenrin
Powered by Bing



THREAT ADVISORY • ATTACK REPORT (Red) |3

Attack Details

#1
The supply chain attack on the rand-user-agent npm package marks a 
sophisticated example of how trusted open-source libraries can be 
weaponized to distribute malware. On May 5, 2025, security researchers 
discovered that a Remote Access Trojan (RAT) embedded in recent 
versions of the package, specifically versions 1.0.110, 2.0.83, and 2.0.84. 
This package, which had over 45,000 weekly downloads, is commonly 
used to generate random browser user-agent strings, seemingly 
harmless functionality that made it a perfect cover for malicious activity.

The attacker did not compromise the project's GitHub repository but 
instead pushed the malicious versions directly to the npm registry. The 
malicious code was hidden in the dist/index.js file, disguised with 
excessive whitespace to avoid detection in code viewers and editors. 
This obfuscation concealed a payload that was designed to be 
reconstructed and executed at runtime. By manipulating string order 
and using disguised functions, the attacker made the injected code 
difficult to analyze without deep inspection.

Once the malicious code was executed, it established a connection to a 
command-and-control (C2) server. The malware harvested basic system 
information, including the hostname, username, and operating system, 
and sent it to the C2 server. From there, the attacker could issue 
commands to the victim’s system, including executing shell commands, 
changing directories, and uploading files. This level of access allowed for 
full remote control of the compromised machine.

To maintain stealth, the malware created a hidden directory 
(~/.node_modules) and extended the module.paths so that it could load 
required packages like axios and socket.io-client without raising 
immediate red flags. This use of standard libraries and environment 
manipulation helped the attack blend into normal development 
workflows, making detection more difficult.

The malicious versions were quickly removed from npm once the breach 
was identified, but users who installed the affected releases remain at 
risk, as simply downgrading does not remove the RAT from 
compromised machines. The incident underscores the ongoing risks 
associated with open-source supply chains, where compromised 
packages can infiltrate thousands of systems through automated 
dependency management.

#2

#4

#3

#5



THREAT ADVISORY • ATTACK REPORT (Red) |4

Audit and Remove Malicious Versions: Ensure that versions 1.0.110, 
2.0.83, and 2.0.84 of rand-user-agent are not present in your projects. 
Even after removal, perform comprehensive system scans to detect 
any residual malicious code or backdoors introduced by the 
compromised package.

Implement Dependency Management Best Practices: Lock 
dependencies to specific versions using tools like package-lock.json to 
prevent automatic updates that might introduce vulnerabilities. Adopt 
scoped packages (e.g., @your-org/package-name) to minimize the 
risk of name collisions and dependency confusion attacks. Set up 
.npmrc files to define trusted registries and prevent unintentional 
installations from unverified sources.

Enhance Security During Package Installation: Use the --ignore-
scripts flag during installation to prevent the execution of potentially 
malicious pre/post-install scripts. Utilize tools and practices that verify 
the integrity and authenticity of packages before installation. 

Strengthen Authentication and Access Controls: Activate 2FA for 
accounts associated with package publishing to add an extra layer of 
security. Apply the principle of least privilege by granting only 
necessary permissions to users and services interacting with your 
codebase.

Recommendations 

Potential MITRE ATT&CK TTPs

TA0002 TA0003 TA0011 TA0001

Execution Persistence Command and Control Initial Access

TA0005 T1071 T1082 T1059

Defense Evasion Application Layer 
Protocol

System Information 
Discovery

Command and Scripting 
Interpreter

T1195 T1027 T1036 T1071.002

Supply Chain 
Compromise

Obfuscated Files or 
Information

Masquerading File Transfer Protocols

T1195.001 T1140 T1071.001

Compromise Software 
Dependencies and 
Development Tools

Deobfuscate/Decode
Files or Information

Web Protocols

https://attack.mitre.org/
https://attack.mitre.org/tactics/TA0002
https://attack.mitre.org/tactics/TA0003
https://attack.mitre.org/tactics/TA0011
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/techniques/T1195
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/techniques/T1036
https://attack.mitre.org/techniques/T1071/002
https://attack.mitre.org/techniques/T1195/001
https://attack.mitre.org/techniques/T1140
https://attack.mitre.org/techniques/T1071/001


THREAT ADVISORY • ATTACK REPORT (Red) |5

Indicators of Compromise (IOCs)

TYPE VALUE

IPv4 85[.]239[.]62[.]36

URLs

hxxp[://]85[.]239[.]62[.]36,
hxxp[://]85[.]239[.]62[.]36:27017/u/f,
hxxp[://]85[.]239[.]62[.]36:3306,
hxxps[://]www[.]webscrapingapi[.]com/

References 

https://www.aikido.dev/blog/catching-a-rat-remote-access-trojian-rand-user-agent-
supply-chain-compromise

https://www.aikido.dev/blog/catching-a-rat-remote-access-trojian-rand-user-agent-supply-chain-compromise
https://www.aikido.dev/blog/catching-a-rat-remote-access-trojian-rand-user-agent-supply-chain-compromise


REPORT GENERATED ON

May 13, 2025 • 3:30 AM

© 2025 All Rights are Reserved by Hive Pro

More at www.hivepro.com

What Next?
At Hive Pro, it is our mission to detect the most likely threats to 
your organization and to help you prevent them from happening. 

Book a free demo with HivePro Uni5: Threat Exposure Management 
Platform.

https://www.hivepro.com/
https://www.hivepro.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

