

Threat Level

HiveForce Labs THREAT ADVISORY

Jupyter Infostealer Returns with New Addition to Its Arsenal

Date of Publication

November 07, 2023

Admiralty Code

TA Number TA2023448

A1

Summary

First appeared: Late 2020 Attack Region: Worldwide Targeted Industry: Education and Health sectors Malware: Jupyter Infostealer (aka Yellow Cockatoo, Solarmarker, Polazert) Attack: Jupyter Infostealer is a malware variant initially discovered in late 2020. Since then, it has undergone continued evolution, altering its delivery methods and techniques to avoid detection and establish persistence on compromised systems. New variants of the Jupyter Infostealer are aimed at evading detection and ensuring persistence, allowing attackers to compromise their victims in a stealthy manner.

X Attack Regions

Powered b © Australian Bureau of Statistics, GeoNames, Microsoft, Navinfo, OpenStreetMap, TomTom,

THREAT ADVISORY • ATTACK REPORT (Amber)

Attack Details

Jupyter Infostealer is a malware variant that was initially identified in late 2020. This malware uses various techniques, including manipulated search engine optimization (SEO) tactics and malvertising, as an initial access vector. It deceives users who are searching for popular software into downloading it from untrustworthy websites. Jupyter Infostealer is known for its ability to harvest credentials and its use of encrypted C2 communication to exfiltrate sensitive data.

Jupyter, the information-stealing malware, has surfaced back with subtle but significant changes that enable it to stealthily create a long-lasting presence on infected systems. The malware used in these recent waves of Jupyter Infostealer assaults changes PowerShell commands and adds private key signatures in an attempt to pass for a genuine signed file and avoid detection.

Jupyter Infostealer can be distributed in a number of ways, just like the majority of other malware. Phishing emails, drive-by downloads, and rogue websites are common delivery techniques. When users click on fraudulent ads or visit compromised websites, they could unintentionally download Jupyter Infostealer. Popular online browsers like Firefox, Chrome, and Edge are frequently the targets of malware.

The recent iterations of Jupyter Infostealer have become more sophisticated, utilizing various certificates to sign the malware, creating a false appearance of legitimacy. However, these fake installers activate the infection chain when executed. These installers initiate an interim payload that utilizes PowerShell to connect to a remote server. Finally, the remote server decodes and launches the Jupyter Infostealer malware, allowing it to stealthily compromise the target system.

#5

#4

#1

#2

Indeed, Jupyter Infostealer has demonstrated a remarkable ability to adapt and evolve over time. The changes implemented in its techniques aim to enhance its evasion capabilities, making it more challenging to detect by security systems and allowing it to maintain its stealthy presence on compromised systems.

Recommendations

Robust Endpoint Security: Deploy advanced endpoint security solutions that include real-time malware detection and behavioral analysis. Regularly update antivirus and anti-malware software to ensure the latest threat definitions are in place. A multi-layered approach to endpoint security can prevent malwares from infiltrating the network through vulnerable endpoints and can detect and block malicious activities effectively.

Remain vigilant: It is essential to remain cautious. Be wary of clicking on suspicious links or visiting untrusted websites, as they may contain malicious content. Exercise caution when opening emails or messages from unknown sources, as they could be part of phishing attempts.

Implement Behavioral Analysis: Deploy advanced security solutions that employ behavioral analysis and monitoring on the host for detection of unusual activities and anomalies in the system. This proactive approach can help catch sophisticated threats before they fully compromise your systems.

Email Security Measures: Employ robust email security solutions to detect and block malicious attachments and links. Consider using advanced threat protection (ATP) and email filtering technologies to sandbox suspicious or untrusted URLs.

Potential <u>MITRE ATT&CK</u> TTPs

TA0001	TA0002	TA0003	TA0004
Initial Access	Execution	Persistence	Privilege Escalation
TA0005	TA0006	TA0007	TA0009
Defense Evasion	Credential Access	Discovery	Collection
TA0011	TA0010	<u>T1566</u>	T1204
Command and Control	Exfiltration	Phishing	User Execution
T1204.002 Malicious File	T1059 Command and Scripting Interpreter	<u>T1059.001</u> PowerShell	T1055 Process Injection
T1547 Boot or Logon Autostart Execution	T1547.001 Registry Run Keys / Startup Folder	<u>T1564</u> Hide Artifacts	T1564.003 Hidden Window

T1620 Reflective Code Loading	T1027 Obfuscated Files or Information	T1027.011 Fileless Storage	T1036 Masquerading
T1070 Indicator Removal	T1070.004 File Deletion	T1112 Modify Registry	T1082 System Information Discovery
T1083 File and Directory Discovery	T1552 Unsecured Credentials	T1552.001 Credentials In Files	T1105 Ingress Tool Transfer
T1005 Data from Local System	T1071 Application Layer Protocol	T1071.001 Web Protocols	T1041 Exfiltration Over C2 Channel

X Indicators of Compromise (IOCs)

ТҮРЕ	VALUE
IP	146.70.101[.]83, 224.0.0[.]251, 78.135.73[.]176, 146.70.71[.]13, 239.255.255[.]250, 91.206.178[.]10, 185.243.112[.]60, 146.70.121[.]88
SHA256	820eda2078723e7f1c09d0e6d3641ea822c2b36c981cb5bfa4e4457336 64c087, 95a96d21f89b5e73ad41c5af5381f54a2697abd0c8490b4fd180ad88e96 77452, 32e0c3db78cdeaa026b8b9ed9c3e4f599eb5d9cb4184aaacae8ec94a0c1 be438, ad7098b4882cdd187a2c2bdf87f6e4cb6c76017975a135cf9c9dcd49ce1f 30d7, c083bf80cfc91f4e3c696bab27760163b9b7621ff4e1230b8129d44b52cc f79a, 39102fb7bb6a74a9c8cb6d46419f9015b381199ea8524c1376672b30fff d69d2, fee1e684cc9588c9aea22c48e9745d0f3150479b2c094c0de598247487f c3f89, 7d57b32e3753a28d2e106392fef0c02ec549062f607563732a64abb4ad 949fde

Seferences

https://blogs.vmware.com/security/2023/11/jupyter-rising-an-update-on-jupyterinfostealer.html

What Next?

At **<u>Hive Pro</u>**, it is our mission to detect the most likely threats to your organization and to help you prevent them from happening.

Book a free demo with <u>HivePro Uni5</u>: Threat Exposure Management Platform.

Contextualize

Uni5 Threat Exposure Management

REPORT GENERATED ON

November 07, 2023 • 4:00 AM

Resolve

© 2023 All Rights are Reserved by Hive Pro*

More at www.hivepro.com