

Threat Level

Red Red

Hiveforce Labs THREAT ADVISORY

Deadglyph Malware Emerges as a Game Changer for Stealth Falcon

Date of Publication

Admiralty code

TA Number

September 26, 2023

A1

TA2023388

Summary

First Appearance: 2012

Actor Name: Stealth Falcon (aka FruityArmor, Project Raven)

Target Industries: Media, Civil Society, Human Rights, Government, Politics, and Nonprofits

Target Region: Middle East **Malware:** Deadglyph Backdoor

⊙ Actor Map

Powered by Bing

Actor Details

- Starting in 2012, the cyber espionage collective recognized as Stealth Falcon, alternatively identified as FruityArmor and Project Raven, embarked on its covert operations. The debut exposure of Stealth Falcon transpired in 2016, drawing a connection between the group and a series of precisely targeted spyware attacks within the Middle East.
- These operations were primarily aimed at journalists, activists, and dissidents in the United Arab Emirates, executed through meticulously crafted spear-phishing schemes. In their most recent operation, Stealth Falcon deployed a cutting-edge and intricate backdoor malware known as "Deadglyph" to breach a Middle Eastern government organization that had already been compromised for espionage.
- The architecture of Deadglyph stands out for its uniqueness, featuring the cooperation of two distinct components: one as a native x64 binary, and the other as a .NET assembly. This combination departs from the usual approach, as malware typically uses a single programming language for all its components. The threat actors also coupled a homoglyph attack in the VERSIONINFO resource using distinct Greek and Cyrillic Unicode characters to mimic Microsoft's information and appear as a legitimate Windows file.
- This unconventional choice implies the potential for separate development of these two components, while also leveraging the distinctive features of their respective programming languages. The exact method used to deliver this implant remains undisclosed for now.
- However, the initial component responsible for triggering its execution is a shellcode loader, which extracts and deploys shellcode from the Windows Registry. Following this, the loader initiates the execution of Deadglyph's native x64 module, referred to as the "Executor."
- The Executor then proceeds to load a .NET component known as the "Orchestrator," which, in turn, establishes communication with the command-and-control (C2) server, ready to receive further instructions. If, for any reason, the backdoor fails to establish communication with the C2 server within a predetermined timeframe, it activates a self-removal mechanism.

O Actor Group

NAME	ORIGIN	TARGET REGIONS	TARGET INDUSTRIES
Stealth Falcon (aka FruityArmor , Project Raven)	UAE	Middle East	Media, Civil Society, Human Rights, Government, Politics, and Nonprofits
	MOTIVE		
	Information theft and espionage		

Recommendations

Registry Monitoring: Keep a close eye on the Windows Registry for unusual activities, especially the extraction of shellcode. Implement monitoring and alerting systems to detect and respond to such activities promptly.

Network Segmentation: Consider segmenting your network to limit lateral movement for attackers. This can help contain any breach and minimize the potential damage.

Application Whitelisting: Implement application whitelisting to only allow approved and trusted applications to run on critical systems. This can prevent the execution of unauthorized or malicious code.

Zero Trust Architecture: Consider adopting a Zero Trust security model, where trust is never assumed, and strict access controls are enforced for every user and device attempting to connect to the network.

Harden Server Configurations: Apply server hardening techniques to reduce the attack surface by disabling unnecessary services, closing unused ports, and following industry best practices for server security.

Implement DNS Filtering: Employ DNS filtering services to block access to known malicious domains and prevent malware communication with command-and-control servers.

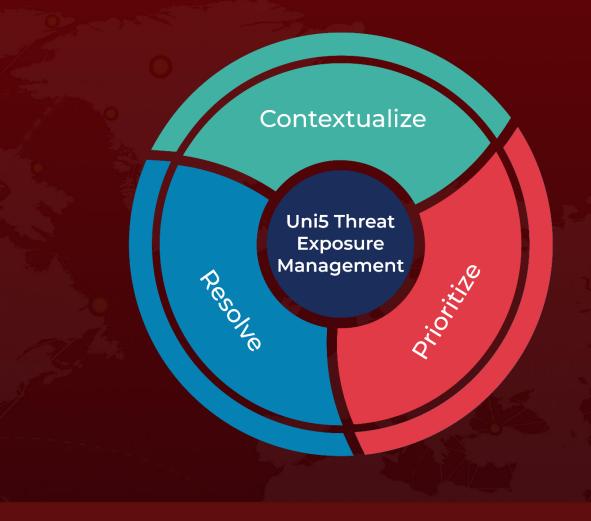
※ Potential MITRE ATT&CK TTPs

TA0042 Resource Development	TA0002 Execution	TA0003 Persistence	TA0005 Defense Evasion
TA0007 Discovery	TA0009 Collection	TA0011 Command and Control	TA0010 Exfiltration
<u>T1583.001</u> Domains	T1583.003 Virtual Private Server	T1587.001 Malware	T1588.003 Code Signing Certificates
T1047 Windows Management Instrumentation	T1059.003 Windows Command Shell	T1106 Native API	T1204.002 Malicious File
T1546.003 Windows Management Instrumentation Event Subscription	T1027 Obfuscated Files or Information	T1070.004 File Deletion	T1112 Modify Registry
T1134 Access Token Manipulation	T1140 Deobfuscate/Decode Files or Information	T1218.011 Rundll32	T1480.001 Environmental Keying
T1562.001 Disable or Modify Tools	T1620 Reflective Code Loading	T1007 System Service Discovery	T1012 Query Registry
T1016 System Network Configuration Discovery	T1033 System Owner/User Discovery	T1057 Process Discovery	T1082 System Information Discovery
T1518.001 Security Software Discovery	T1005 Data from Local System	T1071.001 Web Protocols	T1090 Proxy
T1573.001 Symmetric Cryptography	T1041 Exfiltration Over C2 Channel		

№ Indicator of Compromise (IOCs)

ТҮРЕ	VALUE	
SHA1	c40f1f46d230a85f702daa38cfa18d60481ea6c2, 740d308565e215eb9b235cc5b720142428f540db, 1805568d8362a379af09fd70d3406c6b654f189f, 9cb373b2643c2b7f93862d2682a0d2150c7aec7e, f47cb40f6c2b303308d9d705f8cad707b9c39fa5, 3d4d9c9f2a5aceff9e45538f5ebe723acaf83e32, 3d2accea98dbdf95f0543b7c1e8a055020e74960, 4e3018e4fd27587bd1c566930ae24442769d16f0, 7f728d490ed6ea64a7644049914a7f2a0e563969, 43ed9a3ad74ed7ab74c345a876b6be19039d4c8c, 3a215912708eab6f56af953d748fbfc38e3bb468, 42fb165bc9cf614996027a9fcb261d65fd513527, e204cdcf96d9f94f9c19dbe385e635d00caaf49d, abd2db754795272c21407efd5080c8a705a7d151	
IPv4	185.25.50[.]60, 135.125.78[.]187, 45.14.227[.]55	
Domains	chessandlinkss[.]com, easymathpath[.]com, joinushealth[.]com	

References


https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/

https://attack.mitre.org/groups/G0038/

What Next?

At <u>Hive Pro</u>, it is our mission to detect the most likely threats to your organization and to help you prevent them from happening.

Book a free demo with <u>HivePro Uni5</u>: Threat Exposure Management Platform.

REPORT GENERATED ON

September 26, 2023 • 10:00 PM

